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Stochastic Dynamics: 
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We present the main results of a variational calculus for Markovian stochastic 
processes which allows us to characterize the dynamics of probabilistic systems 
by extremal properties for some functionals of processes. They generalize, by 
construction, the main variational formulations of classical dynamics. This 
framework is used for the dynamical analysis of Nelson's stochastic mechanics, 
an approach to quantum mechanics in which the concept of trajectory for particles 
still makes sense. The semiclassical limit is formulated in terms of the second 
variation of the starting functional. We also use the proposed stochastic calculus 
of variations in the context of statistical mechanics of systems far from equili- 
brium, namely, to solve the Onsager-Machlup problem. 

PROLOGUE 

This articles is a review of a minimal probabilistic extension of the 
classical calculus of variations developed in Geneva and Princeton by K. 
Yasue and the author, and whose main motivation is the characterization 
of dynamics for nondeterministic systems. The emphasis of the review is 
on the applications of this variational point of view in theoretical physics, 
and the necessary fundamentals of probability theory are only briefly sum- 
marized in the first section. Indeed, our approach would be very hypothetical 
without the knowledge of some clear physical interpretations for the simplest 
probabilistic generalization of the classical dynamical laws. Such an inter- 
pretation exists here, since this minimal extension corresponds to stochastic 
mechanics, a new frame for quantum mechanics proposed by E. Nelson in 
1966. The possibility of finding again stochastic mechanics in a variational 
context including Lagrangian and Hamiltonian stochastic versions of 
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dynamical laws suggests that, contrary to a too frequent idea, this physical 
theory is not reduced to an accidental coincidence with the Schr6dinger 
equation. Some physically completely independent problems are also 
investigated from the stochastic variational point of view. 

1. INTRODUCTION 

It seems evident today that the paradigm of classical dynamics with 
smooth and stable trajectories t~--~X(t) is not sufficient for the description 
of all the natural phenomena. Many of them, even in a purely classical 
context, seem more compatible with a probabilistic frame in which the 
irregularity of the paths is easily included. An open problem is then: How 
to discover all the possible dynamics of such probabilistic systems? 

The way illustrated here is a stochastic calculus of variations (Yasue, 
198 la, b) such that the realized dynamics extremalize some "action" func- 
tional of the processes. We will work mainly with processes for which the 
principle of causality holds, namely, Markovian processes. 

After a succinct summary on the stochastic processes considered here, 
viz., time-symmetrical continuous semimartingales (Section 2), ~ve give the 
main results of the stochastic calculus of variations (Section 3). In particular, 
expressed for the deterministic processes, which are trivially Markovian, 
they restore all the principles of the variational formulation of classical 
dynamics (Goldstein, 1980; Arnold, 1976). The third section examines the 
minimal extension of classical mechanics in this stochastic dynamical frame, 
namely, Nelson's stochastic mechanics (Nelson, 1966, 1976, 1984a). To 
paraphrase Caratheodory (1965-1967), the point of view of this section is 
that "the (stochastic) calculus of variations should be the servant of (stochas- 
tic) mechanics." The variational approach suggests a larger dynamical frame 
for this theory, with Lagrangian and Hamiltonian formulations. Some new 
results are obtained, for example, the equation of motion for the first 
quantum correction to a classical trajectory, namely, the stochastic equation 
of Jacobi. It describes the semiclassical limit of quantum mechanics. 

Section 5 is devoted to the investigation of the dynamics in nonequili- 
brium statistical thermodynamics. A very interesting approach to these 
problems was initiated a long time ago by Onsager and Machlup (1953). 
We will find a close connection between this approach and the inverse 
problem of stochastic calculus of variations. In fact, the Onsager-Machlup 
problem (Graham, 1978) can be formulated in the most general case as an 
inverse problem of stochastic calculus of variations. The story of the vari- 
ational principles is long and fascinating. It is nicely summarized in the 
book of Yourgrau and Mandelstam (1979). 
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2. N E L S O N  R A N D O M  P R O C E S S E S  

(1), a, P)  is our basic probability spaCe, where the sample space f~ is 
the set of  possible events to, the sample points, a the sigma-algebra of  the 
observable events, and P the probability measure. X:  (f~, a ) + ( R " ,  ~ " ) ,  
where ~ "  is a Borel sigma-algebra, is a random variable if it is measurable. 
With respect to an arbitrary given sub-sigma-algebra o- of  a, the random 
variable X is no longer measurable in general. However, there exists a 
unique random variable Y in Ll(12, or, PI=) coarser than X but with the 
same value, on the average, on any B ~ or. This is the conditional expectation 
of X under  the condition tr, denoted by Y-= E[XIo-]. The conditional 
probability of  an event A under the condition o-= a is defined by 

P(AI~)  = E[XAIO'] (1) 

where XA is the characteristic function of  A. 
A random process X~(to)---X(t, to) is a family of  •"-valued random 

variables indexed by a time interval. For a fixed to~I~, t ~ X t ( t o )  is a 
trajectory of the process; in the following, it will be always continuous. A 
filtration ~3t is a growing family of  sub-sigma-algebras of a in relation to 
which each X~ is adapted (that is measurable).  So, the "natural"  filtration 
a -< t is simply generated by the past of  the process a <- t =- a { X ( s ) ;  s <- t}. 
Let us denote by a -> t and ~,, respectively, the sigmas-algebra of  the future 
and of the present for )ft. 

X is a Markov process if the past and the future are independent when 
the present is known, that is if  for each time and all events A c a -- t, B ~ a >- t 
we have (Dellacherie and Meyer, 1975) 

P(ABI~I,) = P(AIv,)  �9 P(BIT/,) (2) 

or equivalently, if f and p are any random variables adapted to the past 
and the future, respectively, 

E [ p  . flrh] = E[plrh]E[f]rh] (2') 

Since this definition is symmetrical in time, if  X ( t )  is a Markov process, 
X ( t )  =- X ( - t )  is another one and the kinematics of  these two processes will 
not be independent.  Let us also observe that for the choice a -  t = a -  t = ~7o 
at each time, the process is simply deterministic and the Markov property 
is a version of the causality principle. 

I f  X, is adapted for a filtration ~t,  X, is a ~,-mart ingale  if 

E[X , I~A  = x~ (3) 
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It is well known that the Wiener process Wt is an a-< t-martingale; on any 
time interval, its length is infinite. Some processes are fortunately less 
pathological: their trajectory is of bounded variation. 

A ~t  (local) semimartingale X admits the decomposition 

Xt=Xo+Bt+M, (4) 

with Bo = Mo = 0 and Mz is a continuous (local) ~,-martingale and Bt is a 
continuous ~,-adapted process of bounded variations. [The "localization" 
property requires in fact the use of a sequence of ~ stopping times, cf. ItS 
(1978).] For Xt and ~ ,  given, (4) is unique and called the Meyer canonical 
decomposition. 

Nelson considered (and we shall follow him) ~t  semimartingales X, 
in R n whose canonical decomposition is explicitly given by 

X(t) = X(0)+  DX(s) ds+ or(s) dW(s) (5) 

where W(s) is the Wiener process on R n and the two following limits belong 
to L~(I~) and are continuous from I = [ 0 ,  T] in L1(fD 

DX(t)=li~ E[ X(t+h)-X(t) ~t] (6) 

tr2(t)=limE[ {X(t+h)-X(t)}2 ] 
hr h ~t  (7) 

The first integral in (5) is a Stieltjes integral for each sample and the second 
one a classical (ItS's) ~,-martingale integral. In particular, X(t) is a ~,- 
martingale iff DX (t) = O, t ~ 1 (Nelson, 1976). Let us denote, with ItS (1978), 
by ~ the family of all continuous (local) ~ t  semimartingales which contains 
X and by ~(dX)  the family of (progressively) measurable processes Y 
such that 

Y(. ,  w)o-(., oJ) c L2[0, t] a.s. 

and 

Y(. ,  to)DX(. ,  02) ~ L'[O, t] a.s. 

For such a Yc~(dX) ,  the U-stochastic integral of Y based on dX is 
defined as the ~ ,  semimartingale 

( Jo t ( r" dX=- Y(s)DX(s) ds+ Y(s)tr(s) dW(s) (8) 
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Since the last integral is a ~ ,  martingale the (absolute) expectation yields 

E [ ~  YdX]  =E[ f~  Y(s)DX(s) ds] (9) 

This U-stochastic integral is not symmetrical in time. If dZ = Y. dX denotes 
a process Z, in ~ such that 

Z~ - Z o  = YdX 

we can consider an n-dimensional process Z = ( Z 1 , . . . , Z , )  with dZ~= 
Y~. dX~. Then the process F = f ( Z ) ,  f o r f ~  C2(R" ~ R) satisfies the following 
chain rule: 

dF = X O,f(Z) dZ~ + �89 ~, O@f(Z) dZ~ dZj (10) 
i i , j  

In particular, for f(Z~, Z2)= zig2, one obtains the important integration 
by parts formula 

d(ZIZ2) = Z2 dZl + Zl dZ2 + dZj dZ2 (11) 

whose extra term dZt dZ2, the quadratic variation of Zt and Z2, is a clue 
of this time asymmetry. 

A decreasing filtration ~t is a time-reversed filtration if ~t -= ~- ,  is a 
growing filtration as before. X is a continuous (local) ~t semimartingale, 
X~2~,~, if X ( t ) = X ( - t )  is an ~, semimartingale. YcSg~(dX) if }"(t) = 
Y(- t )  ~ L:~(dX). Then one defines the ~-stochastic integral of Y based on 
dX by 

YdX =- YdX (12) 
t 

so that, if the ~t canonical decomposition -~t is 

) ( ( t )  =.~(0)  + DX(s) as+ 6-(s) dlgC,(s) 

Equation (12) means 

f YdX = YDX ds + f'# dl~,(s) 
t 1 

(5') 
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Now, using the definitions (6) and (7), one verifies that D~i(s) = -D ,X( - s )  
and t~(s)= o-,(-s),  where 

D , X ( t ) = l i ~ E [ X ( t ) - X ( t - h ) l  ] 
h 3, (6') 

cr2*(t)=li~oE[{X(t)-X(t-h)}2h 3 , ]  (7') 

and then the 3-stochastic integral of Y based on dX is the 3, semimartingale 

I ~ f Y. dX = Y(s)D,X(s) ds+ Y(s)cr,(s) dW,(s) (8') 
t 

It follows from the martingale property of the last integral that 

E [ ~  Y. dX] = E l f ,  ~ Y(s)D,X(s) ds] (9') 

The properties of this time-reversed integral are analogous to the properties 
of the ~ integral. In particular, it is not symmetrical in time. For this reason, 
It6 (1978) introduced the two-sided symmetric stochastic integral of Y 
based on dX and relative to ( ~ , 3 )  for X ~ n ~  and Y ~ ( d X ) n  
~,~(dX) by 

YodX=- YdX+ YdX , s<-t<-u (13) 
s u 

Using equations (9) and (9'), it is clear that 

E[If YodX] =E[ff Y(t)~[DX(t)+D.X(t)] dt I (13') 

The main advantage of this symmetric integral is that the chain rule takes 
the same form as in classical calculus. Namely, in the same conditions as 
for (10), but with f ~  C3(Rn-~ R) 

dF = • O,f(Z) o dZ, (14) 
i 

In particular, for f(Zb Z2) = ZIZ2 
d(Z~Z2) = Z2 o dZl + Z~ o dZ2 (15) 

It is also useful to introduce two other notions of symmetric integral. First 
of all, and without reference to the filtrations, one defines the symmetric 
Stratonovich integral by the limit in probability 

f f  YodX=l.i.p. ~ �89 Yt,_,)(X,,-Xt, ,) (16) 
lal-~O i=l 
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for A an arbitrary partition of [s, u] and I A]-= max[ t i -  ti_ ~[, if the right-hand 
side of (16) exists. For example, if X and Ye  ~m this is the case, and we 
obtain the forward Stratonovich integral (It6, 1978), 

I; f I; y o  dX = Y d X +  1 d Y d X  (17) 
2 

In the same way, for X and Y e ~ ,  we get the backward Stratonovich integral 

y o d X =  Y d X  2 s 

If X and Y belong to 9.m c~ ~ we can write again equation (17) for X and 
Y interchanged and add the result to equation (18). Using the relation (16) 
we find the integration by parts formula 

L f d ( X Y )  = Y d X +  X d Y  (19) 

or, after expectation, 

E [ X ( t ) Y ( t ) l l ] = E [ I f  { D X ( t ) Y ( t ) + X ( t ) D , Y ( t ) } d t  ] (19') 

Now, let us assume that the base process Xt is a Markov process whose 
canonical decomposition (5) reduces to the integral form of the (g~) stochas- 
tic (It6's) differential equation 

dX(  t) = b(X(  t), t) dr+ o-(X( t), t) dW( t) (20) 

X(0) = Xo(tO)~ L2(~) [independent of the Wiener process on R", W(t)], 
where b is a smooth R"-valued function, the forward drift, and cr an n x n 
real-valued function, the diffusion coefficient. Since by hypothesis X( t )  is 
also a time reversed semimartingale, it satisfies an (5) stochastic differential 
equation 

dX ( t) = b , ( X  ( t), t) dt + (r,(X ( t), t) dW,(  t) (20') 

Using the general properties mentioned above, one can easily obtain the 
kinematical relations between the terms of equations (20) and (21). 

It follows from the expectation of (17) that 

For X( t )  generated by (20), any Y =  Y(X( t ) ,  t) is also in ~ and, by It6's 
calculus (ITS, 1975a), 

0~ 
dr~ dX, = c , ~ - : - ~  at 

oAi 
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where C(X, t) ==- or. cr'(X, t), for .t the transposed matrix. After integration 
by parts in the right-hand expectation, we have 

where p is the density of  probability of the process X, (we suppose that it 
exists) with respect to the Lebesgue measure. It follows from the validity 
of this last relation for any Y that 

l (b-b , )=+W(Cp)  (21) 

Taking into account the expectation of (18) we also find that, if C,(x, t)=-- 
t), 

C,  = C (22) 

Before concluding this section, we quote a couple of useful formulas. For 
f and g two smooth functions in Co(R "+1) and X( t )  generated by (20), (20') 

0 O 1 02 
Of(X(t), t)=(--+bi--+-Cij--::-_-_ ~f(x(t), t) (23) 

\or OXi 2 O~'~i OXj/I 

and 

D,g(X( t ) , t )=(O+b O 1  02 ,i-~ii-~CiJ oX-~Ox;)g(x(t), t) (23') 

In the mathematical literature, the operators A and A ,  defined by D = 
O/Ot+ A and D ,  = O/Ot + A,  are called forward and backward generators 
of  the diffusion X~. We will simply call this class of time symmetric con- 
tinuous semimartingales "Nelson processes." 

For a very pleasant general review on the theory of  semimartingales, 
the reader may consult Williams (1981). A number of  equations in this 
review hold only almost everywhere, but it will be clear from the context. 

3. STOCHASTIC CALCULUS OF VARIATIONS 

3.1. Stochastic Euler-Lagrange Equation 

The goal of  the stochastic calculus of  variations is to obtain a minimal 
extension of the classical calculus of variations used in classical dynamics, 
particularly for Nelson processes. By "minimal" one means that in the limit 
of smooth trajectories (D = D .  = d/dt), any stochastic variational principle 
must be reduced to a classical one, in the form and in the result. Let 
L ~ C2(R 3n x [ta, tb]) a given real-valued and deterministic function and X( t )  



Stochastic Dynamics 285 

a Nelson process on a time interval ID[ta, tb]. If the process 
L(X( t ) ,  DX( t ) ,  D , X ( t ) ,  t) is integrable, one can introduce the real-valued 
action functional J associated to the Lagrangian L by 

rf ] J: x~-~E L(X( t ) ,  DX( t ) ,  D , X ( t ) ,  t) dt 
l -  ~ t  a 

(24) 

In this expression, D and D .  denote the conditional velocities (6) and (6') 
but with respect to ~ ,  n ~,  ~ ~Tt, namely the present at time t. The notation 
D ~  will be utilized for the set of Nelson processes with fixed end points 
(as random variables) X(ta) = Xa, X(tb) = Xb, and A for the set of Nelson 
processes Z( t )  with Z(ta)=Z(tb)----O. An immediate question from the 
physical point of view is how to choose the form of  the Lagrangian in (24). 
It will be possible to give a partial answer to this question in requiring some 
natural conditions for a probabilistic extension of classical dynamical sys- 
tems (cf. Sections 3.3 and 3.6). 

Let us recall that the functional J = J[X] is differentiable in the sense 
of Frechet (or strongly) if one can write its increment as 

AJ[aX] J[X + J [ X ]  =  (aX) + 0(11 aX II) 

where the (first) "variation" ~ is linear in ~X. q~ is called the Frechet 
derivative of  J and is denoted by M. 

The fundamental theorem of stochastic calculus of  variations is due to 
Yasue (1981a): 

Stochastic Hamilton Principle. A necessary and sufficient condition for 
~ D ~  to be a stationary point of the action functional J is that on 

OL ~-D OL OL 
D O D , X ( t )  * 0--D-~-(t ) 02~ ( t ~  = 0  (25) 

if this equation, interpreted as a generalization of the classical Euler- 
Lagrange equation, is well defined. To give a sense to (25), one considers 
that the stationary point )~ is embedded in a one parameter (e) family of 
Nelson processes Xt(e) = Xt(O) + ev(X,(O), t), where Xt(0) = X~ has an a 
priori given quadratic variation. [This kinematical property is independent 
of  the variational procedure. Notice that during this procedure, processes 
with other quadratic variations are used (cf. ItS's formula). From the 
physical point of view, they are virtual and without any connection with 
the equation of  motion (25).] Also v c C 2, v(x, ta) = v(x, tb) ----- O. Using the 
Lagrange notation ev(X(  t), t) =- 6X( t), X, + 6X, is actually the variation of 
.~, in direction v. Then one computes the (first) variation of J on .~ in this 
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direction by 

OL 6D, X OL 6j[~](6X)= E[ ftb {_~_~6DX + OL +~--~6X} dt] (26) 
L.~t~ OD, X 

namely the Gateaux (or weak) derivative (a/Oe)J[.~ + ev][~=o. 
Using the integration by parts (19'), the commutation of the variation 

and the time derivatives, and the vanishing boundary values of 3X(t), 
equation (26) reduces to 

0 = E  -D,  ~-~-~- DoD, X 6X dt (27) 

by definition of a stationary point of J. Since (27) is true whatever 6X(t), 
one obtains (25). [Denote the random variable in parentheses by Y(t) and 
choose 6X(t) = Y(t)f(t) fo r f ( t )  such thatf ( ta)  = f ( g )  = 0 (Nelson, 1984b).] 
Strictly speaking, one must precise the norm used on the space of Nelson 
processes. The usual L 2 norm IIXII 2= E[IX(t)I 2] is sufficient to obtain the 
stochastic Euler-Lagrange equation (25) but one also introduces other 
norms more appropriate for the variational problems. 

On the (Banach) space of the Nelson processes such that 
suP,o<,_<, b E[lX(t)[ 2] is finite, one defines the norm 

Since, in general, the action functional J = J[x] will not be continuous with 
respect to I1" Iio, one also uses 

(,osup b{ E[lX ( t)12]+ \,/2 I lxl l ,  : E[IDX( t)I2] + E[ID.X( t)[2]}) 

when the right-hand term exists. The associated topology is finer than for 
H" [[o since the norm I1" II, also controls the proximity of the velocities. In 
the conditions of the stochastic Hamilton principle, the action J = J[X] is 
continuous with respect to H" I1,. However, in the particular frame of  Section 
4, one easily constructs interesting "solvable" examples which are not in 
this second class of processes. 

Other norms are proposed in Zheng and Meyer (1982/1983). Actually, 
the main results of this calculus of variations will be independent of  the 
chosen particular norm. 

In the classical limit of  smooth trajectories, the given Lagrangian can 
also be interpreted as a function of three variables only, 

L(X, DX = J~, D.X = X, t) =-- Lc(X, X, t) 
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and the equation (25) will be simplified to the Euler-Lagrange equation. 
Before going further, let us give a more intuitive interpretation of the 
stochastic Hamilton principle via a notion of stochastic functional derivative 
(Zambrini, 1980a). The stochastic functional derivative 6J/6X(t)  for the 
action J is defined by 

= j,o 
If the Nelson process 6X(t) is different from zero only in a h-neighborhood 
of t, the integral will disappear and the right-hand term of (28) will be close 
to 

E[ 6.1 AS] (29) 
L~X(t) J 

for d i S -  3X(t)h.  
In using a polygonal approximation of X(t .  w) between (X~. t.) and 

(X,. t,) it is possible to verify that. as is clear from the definition (28). 

6J aL aL aL 
6 X ( t ) -  DaD,  X(t)  ~-D, aDX(t )  aX( t )  (30) 

In other words equation (25) expresses the fact that the stochastic functional 
derivative vanishes at every time inside the range t~ to tb for a stationary 
point of J. 

It will often be useful to know if a process is not only a stationary 
point of the action J but also a "local" (if one uses the chosen norm) 
extremal, that is a (local) minimum or maximum. It may be seen that if 
X =  X( t )  is a local extremum of J in DX~, then it satisfies the stochastic 
Euler-Lagrange equation (25). The reciprocal proposition is, in general, 
not true. 

Sufficient conditions for such an extremum are interesting since it also 
enables one to ignore the delicate question of existence of a minimum if 
one can exhibit the (unique) process which minimizes J, for example. 

By definition, the action J is (strictly) convex on a domain D if for X 
and X + 6X two Nelson processes in D, 

J[ X + 6X] - J[ X] >_ 6J[ X]( 6X) (31) 

(with equality in X iff 6X = 0). The Lagrangian L is (strongly) convex on 
S c R  3n x• if for all (x,y, z, t) and ( x+u ,y+v ,  z+w, t) in S, 

L(x +u,y+v,  z+w, t ) -L (x , y ,  z, t) 

>-alL(x, y, z, t)u +OzL(x, y, z, t)v+O3L(x, y, z, t)w (32) 

[with equality in (x, y, z, t) only if u = 0 or v = w = 0]. 
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Then we have the following theorem. 

Convex Action Theorem. If L(x, y, z, t) is (strongly) convex then 

J [ X ] =  E[f'f L(X, DX, D.X, t)dt] 

X b is (strictly) convex on Dx., and there is a process X in DX] such that 

OL OL OL 
OOD, X(t~ ) + O, O--D-X(t) OX(t----) = 0 

on [ta, tb] minimizes J on D ~  (and is unique). 

Proof By (strong) convexity of the Lagrangian, 

E[[t 'bt.~ {L(X+SX, DX+D,X, D,X+D,6X, t)-L(X, DX, D,X, t)} dt].~ 
a 

then J is convex. 
The equality is possible only if the integrand are equal (a.e.) that is, 

for L strongly convex, only if 6XD 6X = 8XD, 6X = 0. Therefore 6X(t) 
is a constant random variable, and since 3X(t~)=0 this constant is zero, 
hence J is strictly convex. Thanks to equations (26) and (27) the right-hand 
term of the inequality is also 

M[X](6X)=E[I, '~ (OL D OL D OL ~6Xdt] 
o \ T x -  * a o ,  x /  j 

then a solution X( t )  of the stochastic Euler-Lagrange equation cancels M 
and thus J [X  + ~X] >- J[X]  (with equality iff 6X = 0), that is, 3; minimizes 
J (and is unique). �9 

A proof of the existence and unicity of the stationary point in the case 
of strictly convex action (and the main action functional used in this article 
(Section 4) will be strictly convex for a time interval [to, tb] small enough) 
was given by Zheng and Meyer (1982/1983). 

3.2. Stochastic Hamilton Equations 

Coming back to the Lagrangian L= L(X, DX, D,X, t), one defines 
generalized momenta by 

1 OL 1 OL 
2P =ODX' 2P* -aD, X (33) 
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We will also suppose that L is strongly nondegenerate, and consequently 
that the two equations (33) can be solved in D X  and D , X ,  respectively. 
Then we have the following theorem. 

Theorem. Stochastic Equations of  Hamilton. The stochastic Euler- 
Lagrange equation (25) is equivalent to the system of stochastic Hamiltonian 
equations: 

1 OH 
- D X  = - -  (34) 
2 ap 

1 aH 
~ n , x  = (35) 

ap, 

1 aH 
~ ( D p ,  + D , p )  = - ~-~ (36) 

aL aH 
- - -  = ( 3 7 )  

ot ot 

where the Hamiltonian H is defined by 

H = H ( X ,  p, p , ,  t) = �89 +�89 D , X  - L (38) 

Proof. By the symmetric chain rule (14) for the Nelson process Z--  
(X, p, p,), 

dH OH o OH d X +  aHo dp+ o dp ,+OH dt (39) 
= - ~  Op Op, 0 t 

But we have also, using the definition (38), 

dH = d(�89189 * D , X -  L) 

OL 
= � 8 9  j~p+~p,~ o d ( D , X ) + D ,  X o � 8 9  

- ODxOL~ d ( D X ) _ o ; L x o  d(D,X)_OLot at 

Taking into account the definition (33) of the momenta, the stochastic 
Euler-Lagrange equation (25) becomes a L / a X  = 1 1 ~Dp, +~D,p.  After inser- 
tion in the last expression of dH, this one reduces to 

d H  = D X  o �89 dp + D ,  X o �89 dp, - �89 + D ,  p) o d X  - OL dt 
Ot 

The comparison with equation (39) concludes the proof. Reciprocally, if 
the Hamiltonian variables satisfy the stochastic equations of Hamilton, 
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X(t) verifies the stochastic Euler-Lagrange equation (25), then we have 
the equivalence. �9 

Remarks. (1) It follows from equation (38) that -OL/OX = OH/OX. 
(2) The "classical limit" of the definition (38) reduces to the classical 

notion of Hamiltonian, He. 
(3) It is natural to call stochastic phase space the 3n-space with 

coordinates Pl " " " Pn ; P,I  " " " P,n ; Xl " " �9 X,. After the choice of an Hamil- 
tonian formulation, the relations (33) are completely forgotten. The connec- 
tion between the Hamiltonian variables and the time exists only by the 
equations of  motion (34)-(36) (Goldstein, 1980). 

An illustration of  this aspect is the derivation of the stochastic equations 
of Hamilton directly from a variational principle. 

Theorem. Least Action Principle in Phase Space. Let Z ( t ) =  
r) x-~'pb'p*b be a Nelson process in stochastic phase space. (X( t), p( t), p,( t)) c --.,o,,o,,.a 

A necessary and sufficient condition for this process to be a stationary point 
of the functional 

(X,p,p,)~-->E[ft '~ {lpDx+�89 D , X - H ( X , p , p , ,  t)} dt] (40) 
a 

is that, on this process 

OH OH OH 
�89 = cg--p �89 X -  , �89 + D , p ) -  (41) 

" Op,  O X  

Proof. First observe that the integrand is nothing else than the 
Lagrangian L via the definition (38). By construction here, X, p, and p ,  
are therefore considered as independent variables of a new Lagrangian 

~ ( Z ,  DZ, D,Z)= &Y(X, p, p , ;  DX, Dp, Dp,; D,X, D,p, D,p,)  

The stochastic Euler-Lagrange equations for p, p , ,  and X give, respectively, 
the three equations (41). 

The definition (38) of the Hamiltonian for the momenta (33) justifies 
calling an energy function the process 

OL OL 
e(X, DX, D,X, t)=-~-~DX+o--D-~,xD, X - L  (42) 

numerically identical to the Hamiltonian but a function of the Lagrangian 
variables. 

3.3. Gauge Invariance 

The Lagrangian, the energy, and the momenta are not defined univo- 
cally. Indeed, if L = L(X, DX, D,X. t) gives, by the stochastic Hamilton 
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principle, an equation of motion (25), the same is true for the new Lagrangian 

[,(X, DX, D,X, t) = L(X, DX, D,X, t) -�89 D,F)(X, t) (43) 

for any smooth function F = F(X, t). 
The proof  is immediate. If J[X] denotes the original action (24), the 

new one associated to (43) is 

r f'b 21 dt] J t X ]  = JtX] - E L L (DF + D, F)(X, t) (44) 

that is, using equations (23) and (23'), 

j[X]=J[X]_E[f'ob t_~+~(DX 1 D,X)OxF) dt] 

One directly verifies that the supplementary relation due to this new term 
in the stochastic Euler-Lagrange equation is an identity, and then the 
equation of motion is invariant under the transformation (43) designated 
by a gauge transformation. Two Lagrangians related by such a transforma- 
tion are called equivalents. It also follows from the definitions (33) and 
(42) that 

~=p-axF, ~, =p,-axF (45) 

and 

OF 
[(X, DX, D,X, t) = e(X, DX, D,X, t )+--  (46) 

Ot 

In other words, the transformation of the momenta and of the energy has 
the same form as in classical dynamics. Here, also, these variables are 
dependent of  gauge. 

It may be seen from equation (44) that the two actions J [X]  and J[X] 
differ only by 

E[ F(X( tb), tb)- F(X( ta), G)] (47) 

namely, a constant, since we consider the fixed end points problem for 
X b X(t) ~ Dxo. More generally, we have the following lemma. 

Lemma. Let D c R  n+l, F = F(X, t), and g= g(X, t) a C 1 vector field 
and a C ~ scalar field arbitrary but such that the line integral 
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depends only on the end points of X[ta, tb] in D. Then F and g satisfy the 
closure conditions 

aF ag aF~ aFj 
and i , j =  1 , . . . ,  n (48) 

at aX aXj aX,' 

Proof The (stochastic) differential 1-form integrand of the action I is 

[ tb F~(X,, t) o dX,(t)+g(X,, t) at 
i = 1  . t a 

After expectation, using equation (13'), 

l -  * I t  a 

X b By hypothesis, this action J is a constant on Dxo ; then for all convenient 
~SX, M[X](3X) = 0. Therefore by the stochastic Euler-Lagrange equation 
for Xi, 

\~(aFi ~ag ) +j~=l" ( aFi\a-~j O Fj~I(Dxi+D.Xi)=O z i = 1 ,  . . . , n  

Since these relations must be true for any end points (ta, Xa) and (tb, Xb) 
in D, F and g must satisfy the closure conditions (48). 

Conversely, if the domain D is simply connected (that is without holes) 
the relations (48) imply the existence of a C ~ function S = S(X, t) such that 
the differential 1-form is exact, 

dS = F o dX + g dt 

Since the requirement of gauge invariance is supposed to be funda- 
mental for any dynamical theory, we can use it to obtain an indication on 
the form of  the Lagrangians in stochastic calculus of variations. In the 
classical case, if the Lagrangian Lc is linear in the velocity, 

Lc(X, X, t)= F(X, t)X +g(X, t) (49) 

the corresponding classical Euler-Lagrange equation reduces to the closure 
conditions (48), which implies (in a domain without a hole) that the 
Lagrangian is the total derivative of a function S = S(X, t), 

dS = F dX + g dt 

= Lc at (50) 
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There is only one possible stochastic generalization of this situation, namely, 
as shown by the lemma, 

dS = F o dX + g dt 

=- Ldt 
Since the expectation of equation (50') gives 

E[S(X(tb), tb)-- S(X(t~), G)] 

= E[f/] {F'~(DX + D.X)+g} dt] 

=-E[f[ b L(X, DX, D,X, t)dt] 

(50') 

(51) 

it follows from the comparison between (49) and (51) that, in this particular 
case, 

L(X, DX, D.X, t) =�89 DX, t)+lLc(X, D.X, t) (52) 

This result will be useful for the third part of the review. 

3.4. Constraints 

Usually, in physics, the conditions of  a realistic variational problem 
are not as simple as for the stochastic Hamilton principle. In particular, 
they involve different types of constraints. Here is a stochastic generalization 
of the most useful result in this direction. The problem is to find a necessary 
condition for X( t )  in DX: to be a local extremal of 

If' ] J[X] = E L(X, DX, D,X, t) dt (53) 
ta 

under the constraint during the variation 

coast 
l 

We have the following theorem. 

Stochastic Isoperimetric Theorem. I fP(( t )  e DxX~ is a local extremal point 
for this problem, one can find two constants /~ and A, not simultaneously 
zero, and such that, for ~ = / z L +  AM and on X = 3f(t) ,  

o3? a~ o3? 
D* O--~+ DoD.~ aX 0 (55) 

Remark. One can obtain this result by an argument using the functional 
derivatives (Zambrini, 1980a). The following way is clearer. 
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Proof By equation (26), 

o o x  + 

6K[X](aX)=E o --O---~6X+oDxD6X+oD, x D , 6 X  dt 

If  8K[X] (6X)  = 0 for all 6X in A, the stochastic Euler-Lagrange equation 
for K, 

OM OM OM 
D* ODx+ DoD,X OX =0 

shows that t x = 0 and h = 1 are suitable for the conclusion. If ~K[3?](6X) # 
0, then one can find 6Y in A with ~K[X](6Y)~ O. Let us define for two 
fixed directions 6X, 6Y, the two parameter functions 

and 

It may be seen that 

and then 

Similarly 

jL( 8,, 82) -= J [ X +  8,6X + 826Y] 

k.M(e,, 82) ------- K I N +  8,6X + 82t$ Y" j 

oj,_(e,, e2) &I[R+<,SX+e2,SY](aX) 
08, 

oA(o, o) _ ~ J [ R ] ( a x )  
08t 

ajL(o, o) aJ[2](aY) 
082 

On the other hand, for any 6X in A, the Jacobian condition 

O(jL, kM). ] ~J[X](~X) 6J[X](6Y) ] 
0-(-~-e~, ~2) (0, 0) --- - = (56) 6K[R](6X) 6K[X](6Y) 0 

is satisfied. Indeed, let us assume that -~ is a local minimal. If (56) is not 
true, one knows by the inverse function theorem that (8,,82)~--~ 
(jc(8,, e2), kM(8,, e2)) maps a neighborhood of  (0, 0) into a neighborhood 
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of  (jL(0, 0), kM(0, 0)). Hence we can choose ej and e2 such that jL(el, e2) = 
J [ X ] - a  for some a > 0, and kM(el, e2) = k~a(0, 0) = K [ ) ( ]  = const. But that 
is impossible since X is a local minimal. 

Given that (56) is true, we obtain 

M[X](6Y) 6K[X](6X) 
6J[ ff]( 6X) - 6K[ X]( 6 Y) 

and then the constant 

6J[.~]( 6 Y) 
i.t = 1, A = 3K[X](6Y) (57) 

are convenient for the conclusion because 

Iz6J[X](6X) + A 6 K [ 2 ] ( 6 X )  = 0 for any 3X in A (58) 

o r  

E A ? y  + 0 D x  0--6Y 
a 

The use of  the integration by parts formula (19') concludes the proof. �9 

From the practical point of  view, one interprets (58) as the variation 
6(J + AK) = 0, which means that one can consider the modified Lagrangian 
L+AM without constraint. The constant A will be called a Lagrange 
multiplier. The stochastic isoperimetric theorem is extended without 
difficulty to a finite number  of  constraints. 

3.5. Transversal Conditions and Hamilton-Jacobi Equation 

Some useful constraints are not of  the preceding type, namely, they 
affect only the boundary  conditions of the extremals for the given action. 
They are called transversal conditions. 

Assume that we wish to minimize the action of two variables: 

[I l J = J [ X , t ] = E  ~oL(X(s ) ,DX(s ) ,D ,X(s ) , s )ds  (59) 

o n  

Dx~ =- {Nelson processes X ( s ) ;  X(t~) = Xo and E[N(X( t ) ,  t)] = 0} (59') 
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for N:  R ~ • R -~ R a given C 1 function such that (OxN, atN) # O. Notice that 
in order to define the variation of this action, one may introduce a norm 
on an appropriate  product  space, for example,  II(x, t)ll = IIxll,  + l t l .  

I f  X is a local minimum, it satisfies the stochastic Euler-Lagrange 
equation on [to, t] since the class of  variations considered here contains A. 
Now the variation of J in the directions (6X, 80 is by definition 

6J[ X, t]( SX, 6t) =--~eJ[X + e~X, t+ e6t] ~=o 

r f f'+~'~' a -I 

J 
+ E[L[X + eSX, t+ eSt]6t]} 

If ] = E 6L(s) as + E[L[X, t] 6t] (60) 
ta 

where we use the condensed notations L[X, s] for the integrand of (59) and 
6L(s) for the integrand of (26). Given that X(s) is a stationary point on 
It., t], we have 

MIX, t](~X, 6t)= l\oD--X-(s) ~ O D - ~ ( s )  8 X ( s )  ,o 

+ ElL[x, t] ~t] (61) 

By hypothesis, the right-hand terms corresponds to the set of  level 0 of  the 
functional K[X, t]=-E[N(X(t), t)]. It may be found that 

8K[X, t](SX, 8t)~dE[N(X(t) ,  t)]St+E[OxNSX] (62) 

Indeed, up to an irrelevant constant, K[X, t] is also, by equations (44) and 
(47), 

K[X, t]= E [ f  [ {o,N +~(DX + D.X)OxN} ds] 

It follows from the definition of the variation (60) that 

= E ~ dtJ 6K[X, t](6X, St) 

r / o~t o~ \ ' -I 
J 

+ E[~[X, t]~t] 
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for ~ the "Lagrangian" �89 + D,N)(X, t) of  K[X, t]. Now, the stochastic 
Euler-Lagrange is identically zero for this Lagrangian and we get finally, 
since gX( ta)=0, 

~K[ X, t]( tSX, 3t ) = E[ {OxN�89 DX + D,X ) + OtN}Tt] 

+ E[OxN 3X] 
This is another form of (62). 

Since 6X and 6t are independent, and by the hypothesis on N, this 
function of 6X and 8t is nonzero, then it follows from the stochastic 
isoperimetric theorem that there is a constant A such that 3 ( J + A K ) = 0 .  
The choices of variation for which first ~X(t,)=3X(t)=O and then 
3X(ta) = 3t = 0 give the two relations 

d 
E[L[X, t]] + A ~tE[N(X(t), t)] = 0 (63) 

and 

(~ + OD~-X(t)~ )+AOxN(X(t),t)=O (63') 

The elimination of A between (63) and (63') yields the sought transversality 
condition, 

OxN(X(t), t)E[L[X, t]] 

OL 
-(OD--~(t) ~ OD-~(t)-)dE[N(X(t), t)] (64) 

If the initial point must also satisfy a constraint of the same type, 
E[M(X(t,), t~)]=0, a local extremal will be a solution of the stochastic 
Euler-Lagrange equation with the boundary condition (64) and 

OxM(X(t~), ta)E[ L[Xa, ta]] 

OL 
-(OD~((t~) ~OD,X(t~)) d~ E[M(x(t~)' ta)] (64') 

Any mixed boundary conditions are evidently also possible. Let us consider 
two examples: 

(1) If  N(x, t) = tb-- t, the condition (64) reduces to 

OL OL 
- -  + - 0 ( 6 5 )  ODX(tb) oD, X(tb) 

It is the "variable end point problem" in which the random variable 
X(tb) = X(t) is free. 
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(2) For the given Lagrangian L, let us introduce a function SL = 
SL(X(t), t) by 

N(X( t ) ,  t) 

=- SL(X(t), t ) -  E SL(X(t), t)-- SL(X(ta), ta)- L[X, S] as (66) 
la 

Then Dx N defined in (59') takes the form 

Nelson processes 

X(s ) ;  X(t~) = )Ca and E[SL(X~, t , ) ]+  E L[X, s] ds]= 0 (67) 
,o 

We will call the wave front in t from the point X~ the set of levels defined 
in this way. 

Taking into account the particular expression (66), and if we assume 
that E[L[X, t]] ~ 0, the transversality condition (64) is simplified to 

OL OL 
axSL(X(t), t ) - - - q  (68) 

ODX(t) aD.X( t )  

This was essentially the choice of Yasue's (1981b) original paper. In the 
classical limit of deterministic trajectories, the left-hand term of the equality 
in (67) is nothing but the solution of the classical Hamilton-Jacobi equation 
with initial condition SL(Xa, ta) (Arnold, 1976) and (68) the gradient condi- 
tion OxSLc = Pc ('c for "classical"). Now, classically, the Hamilton-Jacobi 
equation is fundamentally associated to the closure of a differential 1-form, 
namely, 

dSL~ = p~ dX - Hc dt (69) 

Because of the presence of two distinct notions of velocities in the stochastic 
frame, we have no a priori reason to think that (69) is directly generalized 
for the stochastic Hamiltonian defined in (38) or even that the classical 
relation 

If SLc(X, t ) -  SLc(Xa, t,) = L~(X, X, s) ds (70) 
at ta 

can always be extended to the process. But anyway, St = SL(X, t) is not 
completely defined by (68). If  we denote by At(X(t),  t) the right-hand vector 
field in (68) (At for "momentum") ,  we can introduce a scalar field h = 
h(X(t),  t) such that the line integral 

E[I x At(X(t),  t) o d X - h ( X ( t ) ,  t )dt]  (71) 
[ta, tb] 
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depends only on the end points. Moreover, there certainly exists a 
Lagrangian L equivalent to the given one L (cf. Section 3.3) for which 

E l i  x d/l(X(t), t)o dX-h(X(t), t) dt] 
[t~,tb] 

=E[f, lb DX, D,X, t)dt] (72) 

Taking into account the result of Section 3.3 (for a simply connected domain) 
we know that there exists a C ~ function S such that 

axS = ~(x(t),  t) (68') 

atS =-h(X(t), t) (73) 

Equation (73) will be interpreted as a stochastic version of the Hamilton- 
Jacobi equation. 

We can observe, finally, that the stationarity requirement of the right- 
hand action in (72) restores the stochastic Euler-Lagrange equation for the 
original L (by gauge invariance), whereas the stationarity of the left-hand 
action implies the closure conditions associated to the integrated stochastic 
differential 1-form. 

3.6. Maupertuis' Principle for Conservative Systems 

In Section 3.3, we found that the only form of Lagrangian compatible 
with the requirement of gauge invariance is 

L(X, DX, D.X, t)=�89 DX, t)+lLc(X, D,X, t) (52) 

for L c a  classical Lagrangian linear in the velocity. It is then natural to 
suppose that some properties of the usual classical dynamical systems will 
survive for the stochastic dynamics. Let us introduce the class of Lagrangian 
of  the form 

L(X, DX, D.X)= T(X, DX, D ,X) -  V(X) (74) 

where Te C2(R 3n) is a real-valued function homogeneous of degree 2 in 
the velocities DX and D.X, called kinetic energy, and Ve  C2(a 3") a 
real-valued potential energy. It follows from the general definition (38) of 
the Hamiltonian (or from (42)) that the energy function associated to (74) 
is 

E(X, DX, D.X)= T(X, DX, D.X)+ V(X) (75) 
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For this stochastic version of conservative systems (Goldstein, 1980) we 
have the 

Maupertuis Principle of Least Action (Zambrini, 1984). For the class 
of Nelson processes in DxX~ such that 

E[e(X, DX, D,X)]  = h (a constant) (76) 

the stochastic Hamilton principle implies the stochastic Maupertuis prin- 
ciple, which means that if 

If' ] 8E t~ L(X, DX, D , X )  dt = 0 

then 

6thE F e 2T(X, DX, D , X )  d t ] = 0  (77) 
L d X[ . , , ]  

where the index th in the right-hand variation denotes a variation which 
also modifies the interval of the time parameter for the processes satisfying 
the energy constraint (76). 

Proof First of all, let us examine the general relation between these 
two types of variations. According to (26) we can denote by 6L the integrand 
of the Gateaux derivative, namely, 

6L OL OL OL =- --~ aX + BOX + aD, X (78) 
ODX OD, X 

Now suppose that t itself is a deterministic differentiable function 
t:[ua, Ub]~R such that d t / d u = r  Under the bijective time change 
T+ : X ( u ) ~ X ( t ( u ) )  = ..~(u) the two velocities (6) and (6') are modified to 

D , X  = ~bDx, D , , X  = CD, X (79) 

which yields for a variation 6, in which the parameter is also varied 

d 
= D ~ x -  D x ~ ( 8 , t )  (80) 

where 6tt is a variation of the parameter. Similarly, 

d 
6 ,D,X  = D , 6 X  - O , X - ~ (  6,t ) (80') 
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It may be seen that the relation between (78) and this new one is 

\ o OL d 

For example, by definition of the potential and kinetic energies, 

(81) 

8tV = 6 V  

8tT= 8 T - 2 T d  (stt) 

which implies that the stochastic Hamilton principle can also be formulated 
a s  

Now the sense of the constraint (76) in this frame is that one must modify 
the time interval in order to maintain the energy constant; then 

and (82) reduces to 

6,EET+ V] = E[6 ,T+ 6,V] = 0 

Since d(6tt) = 6,r du we finally get the conclusion 

Notice that by homogeneity of the kinetic energy and the definitions of the 
momenta (23), 2T=�89 which implies [cf. equations (9) and 
(9')] that Maupertuis' principle also means that 

6th 2E[~ p dX + ~ p, dX ] =0 (83) 

This formulation is again in ~ccordance with our initial principle of minimal 
extension of the classical variational principles. Actually, it is possible to 
prove more concerning the Maupertuis principle: it is in fact equivalent to 
Hamilton's principle for the considered stochastic conservative systems 
(Zambrini, 1984). This last reference explores the main variational principles 
associated with the variation 8,. 
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4. STOCHASTIC MECHANICS 

4.1. Equations of Motion 

In this section, we shall systematically use the dynamical information 
provided by the stochastic calculus of variations for the minimal extension 
of classical mechanics. It was noted by Goldstein (1980) that for almost all 
problems of interest in classical mechanics, the Lagrangian Lc has the form 

Lc(X, X, t )=  T(X, .,Y, t)+ L,(X, X, t ) -Lo(X,  t) (84) 

where T, L1, and Lo are, respectively, homogeneous functions of degree 2, 
1, and 0 in the velocity. A typical realization of (84) is 

to(X, X, t) =�89163 + X , A -  V (84') 

where G = (Go)(X, t), Gu = Gji, A = (AJ(X,  t), i,j = 1 to n. This type of 
Lagrangian describes, for example, the dynamics of a (system of) charged 
particles in any electromagnetic field and other potential V. 

Now the requirement of gauge invariance (Section 3.3) and also the 
class of Lagrangians introduced in Section 3.6 for Maupertuis' principle 
suggests the following minimal extension: 

L(X, DX, D,X ,  t) =�89 DX, t)+�89 D,X,  t) (85) 

where Lc is of the form (84'). 
Before exploring the dynamical consequences of this choice, let us 

observe that, as in classical mechanics, for a time interval [6, tb] small 
enough, the kinetic term dominates and the associated action functional is 
strictly convex (cf. the convex action theorem, Section 3.1). For a more 
precise statement, consult Zheng and Meyer (1982/1983). We consider the 
simplest case where G = IM (I = n x n identity matrix, M = positive con- 
stant) and A = 0, namely, if [. [ is the Euclidean norm, 

M M 
L(X, DX, D,X ,  t)= ~]DXI 2 +-~-ID,XI 2- V(X, t)  (86) 

or equivalently, according to the definition (38) of the Hamiltonian 

H(X ,p ,p , ,  t)=�89 t)+�89 t) 

l 2 1 2 
=~--~[Pl +~--~IP,[ + V(X, t) (87) 

since the momenta (33) are reduced to 

p = MDX, p,  = MD,  X (88) 
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In the limit of smooth trajectories, L, H, p, and p ,  are clearly simplified to 
the classical definitions for a particle of mass M. 

It follows from the stochastic equations of Hamilton [equations (34)- 
(36)] that the dynamics of the system with the Hamiltonian (87) is described 
by 

DX =----P (89) 
M 

p* 
D,X = ~  (90) 

OV (91) (Dp.+D,p) OX 

This set of equations is equivalent to 

M(DD.X+D,  DX)= OV (92) 
OX 

which is nothing but the stochastic Euler-Lagrange equation (25) for the 
Lagrangian (86). It is natural to interpret equation (92) as the stochastic 
version of Newton's equation. 

Using the method presented in Section 3.5 on transversal conditions, 
we can construct the wave front in t from the point X~ for the given 
Lagrangian. Then, by equation (68), one can find a function SL = SL(X(t), t) 
such that 

OSL M(DX(t) + D,X(t)) (93) --~(X(t), t )=  

Now if we assume that the base process X(t) is a Markov process whose 
(respectively, 5) decomposition reduces to an It6 stochastic differential 

equations (20) and (20'), an important kinematical characteristic of the 
stationary point for the starting action must be precised. Recall that, by 
construction, the quadratic variation of this process embedded in a one- 
parameter family is given a priori. In our case, we impose, using the notation 
(22), 

C ( X ( t ) , t ) = l i m E [ { X ( t + A t ) - X ( t ) } 2 1 ]  At~.O At X(t) =--~I (94) 

where I = n • n is the identity matrix, and h is Planck's constant. 
Such a kinematical constraint was first proposed by Feynman in his 

original space-time approach to nonrelativistic quantum mechanics (Nelson, 
1979; Albeverio and Hoegh-Krohn, 1974). With this assumption, the sought 
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stochastic process is now completely characterized. According to Section 
3.5, one can always choose the function S of (93) in such a way that 

E[fxc,o,,   Mv(X(t) ,  t)o d X - h ( X ( t ) ,  t)dt] 

= E[S(Xb, tb)- S(Xa, ta)] (95) 

namely, the left-hand line integral is independent of the path between 
X(t~) = X~ and X(tb) = Xb. 

We have introduced the notation for (93) [cf. equations (20), (20')] 

v(X(t),  t) =-- �89 + D .X( t ) )  

= ~[ b (x ( t ) ,  t) + b , ( x ( t ) ,  t)] (96) 

In other words, since the form of v = v(X(t),  t) is already imposed by the 
transversal condition (93), h = h(X(t), t) in (95) is adapted so as to close 
the stochastic differential 1-form integrated in the action (95). 

With such a function S, one can construct Ote L2(R n) by 

tp( X, t)=-pl/2(X, t) e (i/~)s(x't) (97) 

where p is the density of probability of X(t)  (with respect to the Lebesgue 
measure dnX) and verify that ~, satisfies 

h 2 
/h00= - Vt~ (98) 

Ot 2M A~+ 

which is the Schr6dinger equation for the (system of) particles of mass M 
in the potential V of the starting classical Lagrangian used in (85). 

In this frame, namely, Nelson's stochastic mechanics (Nelson, 1966, 
1976, 1984a), the Born interpretation ceases being an interpretation and 
becomes a fact: 

[O(x, t)l 2 d~X = P(X(t)  ~ d"X) (99) 

Therefore, the minimal extension of classical mechanics, in this stochastic 
variational frame, corresponds to quantum mechanics. Observe that all the 
hypotheses used to obtain this representation of the Schr6dinger equation 
are of a very mechanical nature, except one of them, namely, the kinematical 
constraint (94). For the reader worried (as the author sometimes is) about 
the existence of two distinct velocities in this interpretation, it will be 
interesting to translate the constraint (94) into the Hamiltonian language: 

Lemma I. The kinematical constraint (94) implies the "canonical com- 
mutation relation" 

E[pj(t)Xi(t) -Xi(t)p. j( t)]  = -8oh (100) 
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Proof. In our simplest case, p = MDX and p ,  = MD, X by (88), that 
is, according to equations (20) and (20'), p = Mb(x, t) and p ,  = Mb,(x, t). 
The left-hand side of (100) is modified to ME[X(b-b,)].  Using (94) in 
the general relation (21) we get 

Vp 
= - -  - -  ( 1 0 1 )  b - b ,  M p 

and then the conclusion after integration by parts. 
The sense of the "classical limit of smooth trajectories" becomes clearer 

thanks to (100). The constant h is a measure of the difference between the 
two momenta p and p, .  There is no way to avoid this dual description of 
the velocities in a stochastic approach of quantum mechanics. 

Let us indicate a useful consequence of this commutation relation. 

Lernma 2. In stochastic mechanics, the following relation is true for 
each t~[ta, tb]: 

~[DDX(t) - O,O,X(t)]  = 0 (102) 

Proof. By the integration by parts formula (19') and (100), 

E[It'~ I [DDX( t ) -D,D,X( t ) ]X( t )  dt] = E[[DX(t)-D,X(t)]X(t),tt  ~] 

=0 

Since the starting action must be zero for any solution X(t) of the stochastic 
Newton equation (92) and for any time interval [ta, tb] C /, we get the result. 

The identity (102) takes a more familiar form if one introduces, follow- 
ing Nelson (1966), the osmotic velocity 

u(X(t), t)=-~[b(X(t), t ) -b , (X(t) ,  t)] (103) 

Indeed, a straightforward computation using the definitions (96) and (103) 
shows that (102) reduces to 

Ou fi 
A v - g r a d  v. u (104) 

Ot 2M 

Taking into account the relation (101) between the osmotic velocity and 
the probability density p, this implies that p satisfies the equation of 
continuity 

Op= div(vp) (105) 
Ot 

Therefore, the kinematical character of this equation in stochastic mechanics 
follows from the commutation relation (100). 
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Before concluding this section, we give a brief discussion about the 
existence of the random processes involved in stochastic mechanics. By the 
construction (95) and the definition (101), we have 

v=VS,  u =�89 logp ( f o r h =  M=- 1) (106) 

which means, by (97), that b and b. can be directly expressed in terms of 
the wave function ~ as 

b = Re V~0+ Im V~0 (107) 
q, q, 

b . = I m ? - R e ?  (107') 

A long-standing and delicate mathematical problem was the following. For 
a given reasonable potential V and a given solution ~b(X, t) of the Schr6- 
dinger equation (98) does there exist a Nelson process X(t)  which satisfies 
the Born condition (99) on [ta, tb] and whose forward and backward drifts 
are given by (107) and (107')? The trouble is that at the nodes of the wave 
function these drifts are very singular. 

This problem is nicely solved by E. A. Carlen in his Princeton thesis. 

Carlen's Theorem (1984). Such a Nelson process X(t)  exists for V in 
the very large class of Rellich potentials, if the initial kinetic energy of the 
system is finite, namely, in the notation of Section 4.1, if 

E[T(DX, O,X)](ta) = E[�88 i 2 ta)+~b.(X, ta)] < oo 

This finite energy hypothesis is natural from the variational point of view. 
It is in fact a necessary condition for giving a sense to the stochastic Hamilton 
principle. 

Finally, we may observe that, even without the introduction of the 
dynamical variables p and p. ,  namely, without the construction of the 
stochastic equations of Hamilton (89)-(91), it is of course possible to obtain 
some interesting properties on the momentum, using directly the information 
contained in the Schr6dinger equation (98) (more precisely in the Fourier 
transform of ~b). Consult Shucker (1980) on this point. 

4.2. Hamilton--Jacobi, Conservation of Energy and Stationary States 

In order to obtain the particular explicit form of the Hamilton-Jacobi 
equation in stochastic mechanics, it is sufficient to use equations (106) and 
the Schr6dinger equation. We find that equation (73) becomes 

O,S =-h(x ,  t) 

= � 8 9  u + u ~ -  v ~) - v ( 1 o 8 )  
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It satisfies the minimal extension principle since in the limit of smooth 
trajectories the osmotic velocity u is zero [cf. (103)] and then the right-hand 
term of (108) reduces to _(%2+ V), namely, minus the classical energy. 

Notice that an independent variational principle, inspired by the 
methods of stochastic control theory, and which enables one to obtain (108), 
was proposed recently by Guerra and Morato (1983). 

This function S, the quantum mechanical phase, enables one to close 
the stochastic differential 1-form of the action (95) and then to give the 
following probabilistic representation for the involved solution (97) of the 
Schr6dinger equation (h = M = 1), 

~,(x, t)= p~/~(x, t) 

xexp{iEx, t[S(X~,t~)+ I,i v(X,,s)~ 

-ftlh(X,,s) ds]} (109) 

where Ex,, is the conditional expectation with the condition X(t)= X. 
Since the right-hand side of (108) is a stochastic version of energy, let 

us consider now the question of the conservation of energy. 
Actually, we already know the probabilistic form of this relation. 

According to the constraint (76) used in the Maupertuis principle, it is, for 
a time-independent potential, 

= E MIDX[a+MID, XI=+ E[e(X, OX, O,X)] [ '4 '4 V(X)]  = const (110) 

The comparison between the right-hand term of (108), -h ,  and e shows 
that we have two different notions of energy. Now any operational notion 
of energy, in quantum mechanics, is actually an expectation. Let us compute 

E[h] = E[�89 2 -  u 2 -  Vu) + V] 

Taking into account the definition (106), we observe that -�89 u] = E[u 2] 
and so 

E[ h ] = E[�89 v2 + u 2) + V] 

E Mb2+Mb.+ 
= [ 4  4 V? 

by (86) and (103). This is precisely the right-hand side of (110). In other 
words, for any te[t., tb], 

E[h(X(t), t)] = E[e(X(t), b(X(t), t), b,(x(t), t))] (111) 
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The particular case v = 0  (the "symmetric case," cf. Section 5.4) is very 
important from the physical point of view. According to the equation of 
continuity (105), it corresponds to a stationary situation (time independent) 
for a conservative system, Op/Ot = O. 

For example, if (97) is of the form 

~O(X, t )=  ~ . (X)  e -m"' (112) 

where 9~. ~ L2(R ") is an eigenfunction of the stationary Schr6dinger equation 
associated to equation (98) for the energy eigenvalue E. [of course on the 
assumption that the given potential V = V(X) admits such a solution], the 
corresponding Nelson process is a strictly stationary Markov process whose 
invariant measure is pd"X=[~o,,(x)[2d"X and the constant in (110) is 
precisely the eigenvalue E.. A stationary situation for which v = VS(X)  ~ 0 
is also possible. It happens if (97) can be written as 

~b(X, t) = p ( X )  e -'E~'-s(x)l (113) 

Such a situation is common for stationary states of the Hydrogen atom for 
ex. (cf. Section 4.3). 

There is a lot of interesting information about the stationary states in 
stochastic mechanics. The mathematical construction of the associated 
Nelson processes was investigated in Albeverio and Hoegh-Kroh (1974) 
and Carmona (1979a). In particular, it is possible to analyze the effect of 
the nodes of 4' on the process X ( t ) ,  namely, the existence of impassable 
barriers (mathematically, the decomposition of  the invariant measure in 
different time ergodic components). For a discussion of these questions, 
one can consult Nelson (1984a), Albeverio et al. (1984), and Nagasawa 
(1980). 

4.3. Gauge Transformation 

Coming back to the classical Lagrangian (84') (with G = I M )  for the 
more general case of a particle (mass M, charge unity) in an electromagnetic 
field with scalar and vector potential ~b and A: 

Lc(X, x, t)= MIR[2+ RA(X, t ) -  c~(X, t ) -  V(X,  t) (114) 

where V describes now all other potentials which act on the particle. Using 
the same argument as in Section 4.1, we find that the associated Lagrangian 
of stochastic mechanics is 

M M 
t( X, OX, O,X, t) =:~lDXI2 +~lO,  Xl 2 

1 
+ ~ ( D X  + D . X ) A  - ~b - V (115) 
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which means that the starting action functional takes the form 

M-;-IDXI2+M~[D, XI2 V) d t+ f t lbAodX ] (116) 

The definition (38) gives the corresponding Hamiltonian 

H(X ,p ,p , ,  t)=�89 t)+�89 t) 

- ~ - ~ l p - A [ 2 +  ]p , -AI2+  ~b+ V (117) 

which yields the stochastic equations of Hamilton 

D X  =P - A  M (118) 

D , X  - p* - A (119) 
M 

1 ~ ( D P , + D , p ) = - ~ [ ( p - A ) + ( p , - A ) ] O x A - O x f b - O x V  (120) 

After substitution (120) modifies to 

M ( D D , X  + + V -�89 DX + D,  DX)  D ,X)A]  

-�89 D,A)  (121) 

Now, with the vector identity 

Ox[�89 D X  + D,X)A]- �89  DA + D,A)  = -c3tA +�89 DX + D , X )  A rot A 

the right-hand term of equation (121) becomes 

FL -~ -OxCb - O,A + �89 DX + D , X )  ^ rot A - OxV (122) 

It follows from the usual definitions of the field E and B, 

E = -Oxqb -o ta  (123) 

B = rot A (124) 

that Fz defines the stochastic version of the Lorentz force plus the external 
one, as required, 

FL = E +�89 + D , X )  A n - O x V  (125) 

In this more general situation, the transversality condition (68) means that 
there exists SL = SL(X(t), t) such that 

OxSL( X, t )= M ( D X  + D , X )  + A =-- p + p,  (126) 
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As previously, the closure of  the associated stochastic differential 1-form 
introduces a new function S which also satisfies (126). If p is the probability 
density of the underlying Nelson process X(t )  one can consider in L2(E"), 

~(X, t)=- pl/2(X, t) e (i/h)s(x't) (127) 

and verify that the equation of motion with the Lorentz force (125), 

M (DD, X + D,  DX)  = FL 

is equivalent to the Shr6dinger equation for this physical situation (Nelson, 
1966) 

1 
ih OO 2M[_ih  V_A]2q~ + c~O+ VO (128) 

Ot 

We make two remarks. The first one concerns the appearance, in the 
starting action functional (116), of the Fisk-Stratonovich integral for the 
vector potential. We may note that the necessity of making this choice is 
already known (in another frame, of course) for the conventional derivation 
of the Schr6dinger equation (128) via the path integral methods (Schulman, 
1981). 

The second remark is related to the physical problem of  gauge transfor- 
mation in quantum mechanics. The difficulty of this question, in usual 
quantum mechanics and in comparison with classical mechanics, is mainly 
L. S., 1981). At this level, the problem of  gauge invariance is nonexistent 
in stochastic mechanics. 

For example, under the gauge transformation 

A ,,~ ,4 = A - 3xF 
(129) 

our Lagrangian (115) is transformed according to (43) into 

L,,~ s L-~(DF+ D,F)  (130) 

without effects on the stochastic Euler-Lagrange equation. Now, it follows 
from the transformation (45) of the momenta that the new transversality 
condition implies the existence of Ss such that 

OxSs t) = d~ -c)xF (131) 

for JJ -~ c)xSL. If we denote, as in Section 3.5, by h the scalar field used to 
close the stochastic differential 1-form associated to L, namely, - h  = OtSL 

the transformed scalar field will be 

O,S~(X, t ) = - h - O , F  (132) 
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The relations (131) and (132) mean that, up to an irrelevant constant (a 
"global gauge"), the two quantum mechanical phases are simply related by 

Ss t )=  SL(X, t ) -  F(X, t) (133) 

and then the wave function by 

0(X, t) = q,(X, t) e -m(x'~ (134) 

It is straightforward to verify that ~ satisfies 

ih O0= 2 ; [ - i h V  - A ] 2 6 +  0~g+ Vq~ (135) 
Ot 

In Pauli's terminology, this is a "local gauge transformation of the first 
Mnd" (Pauli, 1941). 

3.4. Semiclassical Limit 

In the framework of stochastic mechanics, the semiclassical limit corre- 
sponds to comparing a classical, differentiable trajectory with a semiclassical 
one which trembles a little in its neighborhood, as depicted in Figure 1. 
Therefore, it is natural to envisage it as an expansion around a differentiable 
(that is classical) process ~(t), 

X( t )  = ~(t) + 3X(t)  (136) 
xJ 

,Yo. 

Fig. I. 

t 
o r 

The classical solution between two fixed points and a realization of the corresponding 
semiclassical process. 
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where X(t) is a Nelson process of quadratic variation (94) and 8X(t) is 
another in A. One can assume that ~(t) is bounded on the time interval of 
interest, hence g(t) is of bounded variation. Since the quadratic variation 
of a semimartingale is unaffected by the addition of a process of bounded 
variation, 8X(t) has itself the same quantum quadratic variation as X(t). 

For the Lagrangian (86) of quantum mechanics, we assume that the 
action functional J is twice (Frrchet) differentiable and then its increment, 
computed along the classical solution ~(t), is 

aJErX] = 6JE~](SX) + ~ ~2Jr~1(rX) + o(ll 6X II 2) 

This expansion is convenient for describing the semiclassical limit. The first 
variation M[2](rX) is given by equation (2.6), but here, since it is computed 
along the classical path if(t), the integration by parts yields a vanishing 
factor in the integrand, namely, the classical Newton equation for ~ = ~(t). 
By definition, the second variation 62J involves the second-order term in 
the Taylor expansion 

1, [" ftb (02L 2 02L 02L 
ULJ,o +2 0X 0------D~ 8XfDX+2oXoD, X 8X 8D, X 

Jr a2L 2 02L 02L " 2 )  dt] 
ODX2(6DX) + 2 0 D X O D , X  fiDX fiD, X + 2 8~,X2(SD,X) 

namely, given that all the partial derivatives are computed on (~, ~, ~, t) 
and after integration by parts in the one-dimensional case (for simplicity 
we only consider this case in the following), 

tb a2V fix_MDD, f ix_M D, D6X 1E[ f to  { - ~  -5(~(t)) 2 2 ) S X d t ] ( 1 3 7 )  

The requirement of stationarity gives us the equation of motion of the first 
quantum correction to the chosen classical solution 

M(DD,Z+D, DZ) 2V = --~(X(t))Z (138) 

One denotes now by Z the former process 6)( for underlining the fact that, 
as a solution of equation (138), the semiclassical process Z(t) will be, of 
course, no more in A. In n dimensions, the right-hand term of (138) becomes 
(-02 V/OX~OXj)Z~. According to the minimal extension principle, we call it 
the stochastic equation of Jacobi for the Nelson deviation process Z(t). 
Notice that the right-hand term factor of Z is computed on the value ~(t) 
of the classical solution at time t. It is evident that equation (138) can also 
be considered as the stochastic Euler-Lagrange equation for the following 
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quadratic function in Z: 

162j[x]:Z~"~E[I,~ { 4 4 2 ~ tb M~Dz2+M--D,Z2 l ~ ( ~ ) Z 2 }  dt] (139) 

From our point of view, the stochastic equation of Jacobi (138) contains 
all the dynamical information on the quantum semiclassical limit (Zambrini 
and Yasue, 1982). It will be convenient to introduce the scalar product 

and then the norm 

for the sought Nelson process, and the stochastic version of differential 
operator 

02 
Y =- 2 ( D D ,  

V 
+ D,D) + ~--2 (~ (t)) (141) 

in order to examine formally equation (138). Indeed, one verifies immedi- 
ately, after integration by parts, that 

[-M I'll 

Now the domain Dy of Y will be the set of Nelson processes such that 
the boundary term on the right-hand side is zero. In particular, a convenient 
choice corresponds to the following stochastic version of Neumann boun- 
dary conditions: 

�89 + D,Z)(ta) = l(DZ + D,Z)(tb) = 0 (142) 

The following question is evidently interesting from the physical point of 
view of the semiclassical limit: How can we find a nontrivial Nelson process 
Z(t) satisfying the Neumanr conditions (142) and minimizing the quadratic 
functional t32J[fi~](Z) under the natural constraint 

] E Z(t) 2 dt = 1? (143) 
ta 

It follows from the stochastic isoperimetric theorem (Section 3.4) that it 
must be a Lagrange multiplier/~ such that the sought extremal satisfies 

M 02 V 
( DD,Z + D, DZ) = - - ~ ( ~ (  t))Z - IzZ (144) 



314 Zambrini 

in other words, using the notation (141), 

YZ +/zZ = 0 (144') 

Observe that the number /z will be precisely the minimal value of the 
quadratic functional, since 

0 = (Z I YZ + lzZ) = -6zJ[~](Z)  + tz 

Observe also that on the above-mentioned domain, the operator Y is 
symmetric, (f[ Yg) = (Yf[g) for any f and g in DY. The given problem is 
manifestly a stochastic version of a classical Sturm-Liouville problem in 
L:[ta, tb], namely, Y~Z+/xZ=0  for the differential operator on the C 2 
functions in LZ[ta, tb] such that Z ( t a )=  Z( tb )=  0, 

d z ~2 V o 
Yc = M~-~+ ~-~5 (ff (t)) (141') 

In the classical variational context, it is called the "Morse boundary value 
problem" (Morse, 1934). Yc is a symmetric operator with a pure point 
spectrum. Its lowest eigenvalue /~i corresponds to the eigenfunction ZI 
minimizing the classical functional 

62j[,](Z)=ItI'fM-~7[Z'2-2 l _ 5 ( , ( t ) ) Z } d  t 02V 

under the constraint 

I ,b Z( t )  2 dt = 1 
ta 

The other eigenfunctions are only stationary points of this quadratic func- 
tional. A very simple but interesting limit case is the study of this problem 
on a short time interval [ta, tb]---[0, T]. On this assumption, it may be seen 
that the term (OZV/OX2)(~(t))Z is negligible, and therefore the same 
approximation yields the following equation for the semiclassical process: 

M ( D D . Z  + D . D Z )  = - t z Z  (145) 

with stochastic Neumann conditions. 
As an illustration of the stochastic variational point of view, we shall 

solve (formally) the equation (145). We summarize the result in the following 
lemma. 

Lemma. For any classical (differentiable) deviation D(t)  in L2[0, T] 
with Neumann boundary condit ions/)(0)  = / ) ( T )  = 0, one can construct a 
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gaussian Nelson process Z( t ) ,  with stochastic Neumann condition, whose 
wave packet moves without spreading on [0, T] and is centered on D(t), 
Moreover, Z(t)  can be written as 

co 
Z ( t ) =  E (ZIZ.)Zn(t) (146) 

n=l 

where {Z.(t)}.~N are orthonormal Nelson process solutions of the stochastic 
Morse boundary problem 

M ( D D , Z .  + D.DZn) = -txnZ. (147) 

Proof An orthonormal basis of L~[0, T] which satisfies the classical 
Sturm Liouville problem M/9. = - i z .D .  with classical Neumann conditions 
is given by {D.(t)}.~n = {(2/T) 1/2 cos ~o.t}.~n for the positive eigenvalues 
I~. = Mw:. = M(nzr/ T) 2. Then any differentiable D( t) can be written D( t) = 
~.~--1 (D, D.)D.( t ) ,  where ( , )  is the scalar product in L2[0, T]. Now let 
us consider a process Z(t)  solution of the stochastic differential equation 
on [0, T] 

dZ(t) = { D ( t ) - [ Z - D ( t ) ] }  d t + ( h / M )  1/2 dW(t) (148) 

for some initial condition in L2(fl). It is a Gauss-Markov process with the 
normal distribution N(D(t) ,  h/2M). In particular 

T+ f o T IlZll =  D(t)2 dt 

is finite. Using the relation (21) for C =h/M,  we get the backward drift 
b,(Z, t) = D(t)+ Z -  D(t) and then 

~[DZ(t) + D.Z( t ) ]  = / 9 ( t )  (149) 

which means that Z(t)  satisfies the stochastic Neumann condition (142) 
on [0, T]. Moreover, since the variance of Z(t)  is constant on this interval, 
we have no "spreading" of  the associated wave packet. 

Let us introduce an infinite collection of Nelson processes {Z.(t)}.~N 
such that 

dZ~( t) = -to.[ Z -  a.(cos w . t - s i n  ~%t)] dt + (h/ yM) 1/2 dWn( t) (150) 

where the W.(t) are independent Wiener processes, w. as above 

h ~ 1/2 

and 7 a finite constant without dimension. 
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Note that (15.1) has a sense for T small enough. These processes are 
also Gauss-Markov processes and their normal distributions are 

( 1) 
an C O S  o J n l ,  - -  - -  

2M 

It follows from their independence that (Z.IZm) = 6.m, and they also verify 
the stochastic Neumann conditions. A simple computation shows that each 
process Zn (t) satisfies the stochastic Morse boundary problem (142) for the 
above-mentioned eigenvalue/z..  

On the other hand, if we denote (ZIZ.)  by ~., the processes ~.Z.  are 
also normal with distribution 

2r c~nan cos w,t, 2M - -  

Now if, for each t, this series of processes converges in probability (or 
equivalently in mean square since they are Gaussian) the limit is also a 
Gaussian process, with distribution N(m(t) ,  or2). By identification with the 
distribution of the Gauss Markov process Z( t )  and using the convergence 
of D(t)  in L2[0, T] we find compatible conditions on the coefficients 
(D, D,)  -= 0n and a,. The constant 3' is determined by the constraint on the 
quantum mechanical quadratic variation of the limit process Z(t) .  

Of course this construction is partially qualitative, but it convinces me 
that the stochastic equations of Jacobi (138) contains indeed all the physics 
of the semiclassical limit, and that the stochastic version (144) of the Morse 
boundary value problem deserves to be closely examined from the mathe- 
matical point of  view. Instead of  doing that, we prefer to comment on the 
physical sense of the preceding construction. 

For each frequency w,, the process Z,  represents a mode of deviation 
from the classical path. The corresponding Gaussian wave packet moves 
without distortion. Up to the local scale of the fluctuations, it is a "coherent 
state" (Schr6dinger, 1926; Glauber, 1963) of the oscillator ton, as it must 
be during a short interval of time. 

In the flow of papers on the semiclassical limit, we may cite, as 
illustration of  the conventional approach of quanum mechanics (Kac, 19xx; 
Hagedorn, 1981), for the connection with the nature of the underlying 
classical motion (Berry, 1981), and from the stochastic mechanics point of 
view but for stationary states (tunneling problems) (Jona-Lasinio et al., 
1981a, b). For other aspects of Nelson's theory, in particular for the incor- 
poration of  spin into stochastic mechanics, the main source is, of  course, 
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Nelson's (1984a) book. Consult also Dankel (1971), Dohrn et al. (1979), 
Faris (1982), Guerra (1980), Dankel (1977). 

In the framework of stochastic mechanics, the central motivation of 
this calculus of variation is to obtain new physical information both on the 
quantum kinematics and dynamics. From the kinematical point of view, 
for example, a quantum extension of the mechanical theory of constraints 
is now possible. From the dynamical point of view, the search for noncon- 
servative quantum evolution (Yasue, 1978) will be simpler in this variational 
frame. More generally, for all the extensions of quantum mechanics in the 
domains where it is expected to be in probable contradiction with the 
phenomena, the variational point of view, close to the classical physical 
intuition, may enable us to guess more easily the new laws we are looking 
for. An example of this type of research is given by the impressive program 
initiated by Smolin (1983) on the relationship between quantum and gravita- 
tional phenomena. 

5. O N S A G E R - M A C H L U P  PROBLEM IN NONEQUILIBRIUM 
STATISTICAL MECHANICS 

5.1. The Problem and its Various Approaches 

Let us consider an open thermodynamical system which is not in 
equilibrium. Its state is characterized by a set of macroscopic variables X(s) 
on ~" whose evolution is continuous in time. For numerous physically 
interesting situations (Enz, 1977), one may suppose that X(s) is some 
Markoffian stochastic process. Such a framework begins with several trends 
in nonequilibrium thermodynamics. From the physical point of view, two 
main directions must be mentioned which both wish to determine (by 
different ways) some potentials, possibly dependent on time, from which 
the macroscopic properties of the system will be derived. 

The first one is Prigogine's school (Nicolis and Prigogine, 1977), which 
is particularly interested in steady states far from equilibrium. The second 
one, initiated by Onsager and Machlup (1953), instead considers small 
departures from the equilibrium situation, modelized by "linear Langevin 
equations" for X(s). This last approach was generalized by Graham (1978) 
to arbitrary stochastic differential equations in these variables of the form 
(20) but for homogeneous processes, namely, 

dX(s) = b(X(s)) ds + o'(X(s)) dW(s) (152) 

The motivation of the one-dimensional (for simplicity) Onsager-Machlup 
problem is to find, for a given equation (152), a function LOM = LoM(X, .~) 
such that the following (formal) integral representation of the transition 
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semigroup (Glimm and Jaffe, 1981) makes some sense: 

(Kernel e'A)(x, y) 

I [fo ] = W  e x p -  LoM(X(u) ,X(u))du [I dX(s) (153) 
C(x,y,t) 0 < s < t  

where e 'A=- Tt is the transition semigroup of the process considered, A the 
(forward) generator of this diffusion, C(x, y, t) the set of continuous paths 
Xu: [0, t ] ~ N  such that X(0) = x and X(t)  =y, and W a normalization. The 
function LOM is called the Onsager-Machlup Lagrangian. In other words, 
since (T,f)(x) is 

( Ttf)(x) = IRf(y)p( t , yl0, x) dy (154) 

for any f bounded and measurable, if the right-hand side is defined, the 
problem is to represent the transition probability density p(t, y]0, x) [defined 
by p(X(t)  -< ylX(0) = x) =p(t, y]0, x) dy] in terms of LOM according to the 
formula (153). 

In using a discretization procedure, the solution obtained (for a unity 
diffusion coefficient tr) was (Graham, 1978) 

LoM(X, X)  = �89 - b] 2 + lb• (155) 

For example, for the standard Wiener process ('b = 0, o- = 1) the potential 
sought is zero, only the "kinetic term" suvives. 

Since only potentials invariant under coordinate transformations were 
supposed to have physical meaning, the whole program was presented for 
an n-dimensional diffusion process on a Riemannian manifold M. 

From a more precise point of view, there exist at least two independent 
approaches to this type of problem, namely, an analytical approach and a 
probabilistic one. Let us illustrate the analytical approach with an example. 
Suppose that 0o is the strictly positive ground state of the Hamiltonian 
operator on Lz(R, dx) with zero lowest eigenvalue 

1 d 2 

H = - ~  dX2+ V (156) 

It is well known that one can construct a diffusion process associated to H 
usingthe unitary equivalence between L2(B~, dX) and L2(R, 02(X) dX)under  
the unitary operator U:g~--~tpolg. Then H is equivalent to (minus) the 
forward generator A of the diffusion sought, - A  = UHU -l, namely, 

d 1 d 2 
A = -gx  dX+~ dX ~ (157) 
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fOr 

(~o)x 
gx = (158) 

r 

The right-hand term of (158) is noting more that the definition (107) of the 
forward drift b in stochastic mechanics. 

Using - A  = UHU -1 and (158) one finds the relation between V and b, 

V(X) = �89 bx] (159) 

This is essentially the Onsager-Machlup potential of (t55) associated to 
the stochastic differential equation (152) with unity diffusion coefficient o-. 
For a given potential V, equation (159) is actually a Riccati equation for 
the forward drift b and the definition (107) of b in term of ~o enables us 
to linearize this Riccati equation in the time-independent Schr6dinger 
equation for qJ0. The operator 

= b-._q_a + 1 d 2 
A dX 2 d X  2 

is in fact the generator of a hypercontractive semigroup on L2(~, ~boZ(X) dX) 
and it is called a Dirichlet operator (Carmona, 1979b). 

Observe that, since Tt = e rA on Lz(•, tp~(X) dX) is unitary equivalent 
to e -m on L2(~, dX) the underlying diffusion process may also be inter- 
preted as the result of an analytic continuation which replaces t by - i t  in 
the propagator for the Schr6dinger equation. Nelson (1984a) discussed at 
length in what sense this point of view is less natural than the real time 
stochastic mechanics interpretation. 

The probabilistic approach of the Onsager-Machlup problem starts 
from a new statement of the initial question, namely, one looks for an 
asymptotic evaluation that the sample path X ( . ,  to) belongs to a small tube 
of diameter 2e around a chosen differentiable trajectory x(t) :[0, T ]~  
(more generally in M). Ifpx(o) denotes the probability measure for a process 
starting from x(0) and whose forward generator is the operator A mentioned 
above, the solution is given by (Ikeda and Watanabe, 1981) 

Pxm,( s~axllXs - x( s )l < e ) 

C exp[- -Tg j exp - LoM(x(u), 2(u)) du as e J,0 (160) 

where the first factor contains only constants and LOM is (155). On a 
Riemannian manifold M (without boundary) with norm I]" II the Onsager- 
Machlup Lagrangian LOM: T M ~ N  takes the form (Takahashi and 
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Watanabe, 1981) 

LoM(x, 2)=�89 d i vb (x ) -~R(X)  (161) 

where R is the scalar curvature. 
The presence of this strange curvature term in the Lagrangian is not a 

surprise for the physicists interested by the question of  quantization on 
curved space. In particular, they know that the value of the constant factor 
in this term is a traditional object of dispute between the physicists (Schul- 
man, 1981). Now let us examine the Onsager-Machlup problem from the 
point of view of stochastic calculus of variations. 

5.2. Inverse Problem of Stochastic Calculus of Variations 

In the deterministic case, the inverse problem of (classical) calculus 
of variations can be formulated in the following way. Given a second-order 
differential equation 

2ff2 = f(  X, X, t) (162) 

for which Lagrangian Lc = Lc(X, X, t) does equation (162) coincide with 
the Euler-Lagrange equation 

d_(oL<  
dt\oJCi -O-X = O? (163) 

As we know from classical mechanics, if such a Lagrangian exists, it is far 
to be unique. The general solution of this problem is difficult, but if the 
right-hand term of equation (162) is such that 

d/OU\ OU (164) s= Tt ) ox 
for some nice U = U(X, X, t) then 

to(X, 2, t) =�89 U(X, 2, t) (165) 
is the simplest solution which corresponds to a Newtonian system with 
forces derivable from a potential. 

By analogy with stochastic mechanics, the problem presented in Section 
5.1 can be solved as follows. Given It6's equation (152) with X(0) = Xo(6O) 
compute the "mean acceleration" 

�89 DD, X + D, DX) (166) 

with the help of the kinematical relations (21), (23), and (23'). If one can 
find a nice function U = U(X, DX, D.X, t) such that this result takes the 
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form 

OU oU oU 
DOD, x+ D* oDX OX (167) 

then the Lagrangian 

Z(X, DX, D,X, t)=�88188 Xl =- u(x, DX, O,X, t) (168) 

is a solution of  this inverse problem of  stochastic calculus of  variations, 
namely, the process (152) is a stationary point of the action functional (24) 
for L. This point of view, which enables one to associate a "potential U"  
with a given stochastic process, may be called "thermal mechanics" in order 
to underline the distinction from stochastic mechanics (Zambrini, 1980b). 

We illustrate the method by the simplest example, the one-dimensional 
standard Wiener process with initial measure concentrated at ttae origin 
[b = 0, o-= 1 in equation (152)]. By means of equations (23) and (23'), one 
obtains, for X(t)= W(t), 

I (DD, X + D, DX) = X 
2t 2 (169) 

Then, one can choose here U =  U(X, t) in the definition (167) with 

X 2 
U = - -  (170) 4t 2 

X T �9 Consequently, this Wiener process in Dxo is a stationary point of the action 
functional 

T 1 1 2 
J:X~--~ E[I  ~ {-~(DX)2+-~(D,X)2-~} dt] (171) 

The advantage of this indirect approach to the Onsager-Machlup problem 
lie in its formal relation to quantum mechanics. In the previous example, 
we know, thanks to stochastic mechanics, that equation (169) is associated 
to a SchrSdinger equation for the potential U = U(X, t) of (170). In par- 
ticular, this relation enables us to define a natural "classical limit" for the 
given diffusion (here the Wiener process), namely, the one associated to 
the corresponding Schr6dinger equation. 

The relation between thermal mechanics and the classical Onsager- 
Machlup problem may seem superficial. This is not the case, however, as 
we shall see, if we start from a homogeneous diffusion process whose 
invariant measure is symmetrizable. Before that, we briefly recall the kine- 
matical results necessary for defining stochastic mechanics on an n- 
dimensional Riemannian manifold M. 
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5.3.  S t o c h a s t i c  M e c h a n i c s  on a R i e m a n n i a n  M a n i f o l d  

A generalization of ItS's stochastic differential equation (20) is given by 

dXi(t)  = bi(X, t) dt+e~(t)o dWJ(t), X(0) =Xo (172) 

dej(t) = -Fik (X)e~( t )o  dX ' ( t )+ �89  dr, e(0) = e0 (173) 

Here {e~-(t)}i,j=~to n is an orthonormal base of the tangent space TxM with 

e'te~= C U (174) 

and C=(Ci i )  denotes the Riemannian metric tensor. The WJ(t) are n 
independent Wiener processes such that 

E[dW'(t)]=O, E[dW'( t )  dWJ(t)]=~'Jdt (175) 

The first term in the right-hand side of equation (173) represents It6's 
(1975b) generalization of the Levi-Civit~ parallel transport of the frame e 
along the curve X(t ) .  Indeed, let us recall that in the classical case, any 
vector U~(t) is transported parallelly along the smooth curve X( t )  in the 
sense of Levi-Civit~t if and only if 

~U'==-dU~+UKUJdX K =0,  U(0)= Uo (176) 

where the Fjk =F~K(X) are the Christoffel symbols. Since It6's generaliz- 
ation uses the time symmetric Stratonovich integral o in order to translate 
the orthonormal frame e from eo along the random curve X(t) ,  this operation 
is time symmetric. But it is not the convenient geometrical construction for 

l n i  K stochastic mechanics. It is the origin of the supplementary term ~KKej dt 
in (173), where R~: is the Ricci tensor, introduced by Dohrn and Guerra 
(1977, 1978). This operation is no longer reversible (for example the length 
of the transported vector is no longer conserved) but it enables us to define 
the suitable notion of stochastic acceleration. 

A discussion of these questions may be found in Nelson (1984a) and 
Meyer (1982). The computation of a mean derivative like (6) becomes, for 
(172), 

D X  i =- lim E X( t )  
Ate,0 

-i - r [ e j ( t )~  ] = b +l im ~ /  X( t )  
at~o t_ At 

Using the properties of the symmetric integral, equation (173), the rules of 
It6's calculus, and the definitions (174) and (175) we get 

D X  i f~i=b i lri r, lK (177) 
~ -  - - ~ X  l K , , .  ~ 
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Now equation (173) is actually true for the stochastic parallel displacement 
of any vector U along X from X (0) = Xo to X( t ) ;  then one can introduce 
the linear operation of displacement 

Tx,,: Txo M-~ Tx(oM 

U(O)~-> U( t) (178) 

such that U(t) is a solution of (173) (where U; replaces ei), and define the 
mean forward derivative of a vector field f = f ( X ,  t) by 

Df(x(t),  t)=-a,~olim E[  Txlt+~'f(X(t+ At)'Att+ A t ) - f ( X ( t ) '  t) X ( t ) ]  

which yields 

Df  ~ = OJ'+ ~ j v j f i  + �89 (179) 
Ot 

where ADR is the Dohrn-Guerra  operator such that 

ADR f '  = vJvjf '  + R}f  j (180) 

The extra term R~ff for the generator of the diffusion corresponds to the 
geodesic correction to ItS's (Levi-Civit~) stochastic parallel displacement. 
Contrary to the Laplace-Beltrami operator, ADR commutes with V, and it 
follows from this choice that the stochastic Euler-Lagrange equation for 

M i M i L( X, DX, D,X,  t) = - -  DX DX~ +-~ D , X  D,X,  - V( X, (181) 

leads to the SchrSdinger equation 

ih aq, h 2 . - - = -  V'V~O + V~0 (182) 
at 2M 

For further results concerning stochastic mechanics on a Riemannian mani- 
fold, consult Dankel (1971, 1977) and, for another use of this frame 
Nagasawa (1980). Now we come back to the Onsager-Machlup problem. 

5.4. Onsager-Machlup Potential 

We consider the inverse problem of stochastic calculus of variations 
for a diffusion process whose invariant measure ps(X)dMX [where dMX = 
(det C) 1/2 dX 1 �9 �9 �9 dX n] is symmetrizable on the Riemannian manifold M 
(Ikeda and Watanabe, 1981), namely, such that 

fM rd~ d . X  = f f (X)T ,g(X)ps(X)  dMX (183) 
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for any smooth function f, g: M ~ R  in the domain of the transition semi- 
group T. 

There exist numerous equivalent characterizations of this property. The 
most appropriate form for our purpose is the following relation between 
the (forward) drift b of the diffusion and the density ps of its invariant 
measure (27) 

b i =�89 log Ps (184) 

In physics, we generally call this equation the "detailed balance condition." 
If we use again the kinematical relations (96) and (101) introduced for 
stochastic mechanics (for h = M = 1), we can easily verify that the detailed 
balance condition is equivalent to a vanishing current velocity 

v ~ = - � 8 9  =0 (185) 

Now, it is a simple matter to find the form of the potential V in the stochastic 
Newton equation associated to the Lagrangian (181). We get 

V = �89 + V'b,] (186) 

This is indeed the Onsager-Machlup Lagrangian we are looking for. The 
absence of the curvature term [compare with (161)] comes from the fact 
that, by construction, in stochastic mechanics, the classical limit of our 
Lagrangian (161) does not contain this factor whereas it must be included 
in the starting Lagrangian for the conventional quantization procedure 
(Schulman, 1981). Therefore, this solution of the inverse problem of stochas- 
tic calculus of variations gives us the complete dynamical information on 
the considered homogeneous diffusion process (Zambrini, 1980b). 

By way of conclusion, we may observe that the stochastic variational 
frame presented in this review seems also adapted to problems in hydrody- 
namics (Nakagomi et al., 1981; Yasue, 1983). 

NOTE ADDED IN PROOF 

A retrospective look at the hypothesis used for the derivation of all 
these variational results suggests the following natural question: Is it really 
possible to construct  diffusion processes satisfying these hypotheses and 
not only, as in this review, to assume their existence and to characterize 
their dynamics? The answer to this question is fortunately affirmative, and 
developed in a forthcoming publication (Zambrini, 1985). 
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